
A Simple Technical Introduction to

Zero-Knowledge Proofs

Ellen Kolesnikova

December 2024

1 Introduction

This writeup attempts to present the full technical details of recent Zero-Knowledge
proof systems in a more beginner-friendly manner.

This article started as a set of notes that I took while reading an excellent
technical Systematization of Knowledge paper for VOLE-based interactive ZK
proofs [BDSW23]. I then thought that it may be useful to write it up as a
hopefully somewhat beginner-friendly technical introduction to ZKP. The reader
is expected to be comfortable with math and have a general sense of crypto
(encryption, authentication), formal security properties, etc.

2 Definitions

• Prover - Party (or algorithm) that proves the truth of a statement -
referred to as P.

• Verifier - party (or algorithm) that the prover convinces of the truth of
a statement - referred to as V.

• Zero-knowledge proof - “a cryptographic protocol where a prover can
convince a verier that a statement is true, without revealing any further
information except for the truth of the statement”.

• Proof of knowledge - the prover convinces the verifier that it knows a
specific desired value, rather than simply that the value exists - the proofs
discussed in this paper are proofs of knowledge.

• Ring - a set of elements with addition and multiplication defined over
them. These operations have certain constraints similar to the constraints
of operations within a group. A typical ring is a set of integers modulo
2n. Rings are interesting because computers work with rings (e.g. int is
a set of integers mod 232).

1

• Homomorphic encryption - an type of encryption scheme where en-
crypted values can be operated upon without the knowledge of the private
key, and the values they represent will be appropriately changed. E.g. with
additively-homomorphic encryption you can add two encrypted numbers.

• Schwartz-Zippel Lemma - Let F be a finite field, S be a subset of F ,
and P be a non-zero polynomial over F of degree ≥ 0. Then, given a

random s ∈ S, the probability of Prob[P (s) = 0] ≥ degree(P)
|S| . Essentially,

it is unlikely for a random sampling to “hit” the root of the polynomial
P .

3 Notation

• P denotes the prover

• V denotes the verifier

• [x] denotes the VOLE-authenticated value of x, as discussed in Section 5.
P possesses x and M , while V possesses k and ∆.

4 Overall goal of the paper

The paper is a “survey of recent developments in building practical zero-knowledge
proof systems using vector oblivious linear evaluation (VOLE), a tool from se-
cure two-party computation”.

5 Vector Oblivious Linear Evaluation (VOLE)

“A VOLE correlation is a pair of random variables (M⃗, x⃗) and (k⃗,∆), where

x⃗, M⃗ , k⃗ are vectors and ∆ is a scalar, which are all random subject to the
constraint that M⃗ = k⃗ + x⃗ · ∆. One party, in our case the prover P, is given
M,x, while the verifier V learns (k⃗,∆)”. x⃗ can be thought of as the vector of

secrets, M⃗ can be thought of as their authenticators (MACs), and k⃗ can be

thought of as the key to the MAC. Prover does not know ∆ or k⃗, and thus
cannot forge MACs. The random variables x⃗, M⃗ , k⃗,∆ are chosen from a ring R.

6 How VOLEs are instantiated (through homo-
morphic encryption)

V chooses ∆ first from a sufficiently large subset of R (could be R itself). V
then “samples a public key/private key pair, [and] sends an encryption of ∆ to
P”.

P chooses an x and an M and computes an encryption of k using homomor-
phism:

2

• P calculates the encryption enc(x ·∆). This is done by adding enc(∆) to
itself x times (possible under additive homomorphism; note, use repeated
doubling and addition for efficiency for large x).

• P calculates enc(M) using V’s public key.

• Finally P evaluates enc(k) = enc(M)− enc(x ·∆) using homomorphism.

• P sends enc(k) to V, who decrypts it to obtain k.

In this way, P is left with x and M , and V is left with ∆ and k, such that
M = k + x ·∆ - a VOLE correlation.

There are efficient ways to extend VOLEs (create new ones without having
to instantiate them directly, which takes communication).

7 VOLE-based ZK

As we will see in Section 8 and ??, VOLEs have convenient homomorphic prop-
erties: given [x] and [y], it is easy to obtain [x+y] and [x·y]. This homomorphism
is what makes them so useful in ZK proofs of knowledge.

Indeed, suppose P wants to prove that he knows an input x, such that
for some predicate represented as an arithmetic circuit C, it holds C(x) = 0.
The players, P and V, start with generating these VOLE correlations on C’s
inputs, corresponding to P’s witness x. This is directly achieved by the VOLE
functionality (see Section 6 for an example instantiation). Then comes the
crucial part: using VOLE homomorphism, P and V jointly evaluate C, gate by
gate, starting with the input VOLEs (P computes on xi and Mi; V computes
on ki and ∆). This results in authentication correlations assigned to each wire
of the circuit. Then, if C(x) = 0, on C’s output wire it should hold that
M = k + 0 · ∆ = k. If M ̸= k at the end, the proof fails. Otherwise, if
M = k, V will be convinced that C(x) = 0 and hence that P knows the secret.
This conviction comes from the correctness of the homomorphic operations and
from the fact that P is unlikely to guess the “correct” M. Notice that V himself
will learn no additional information, because he is only checking that M = k,
something that is already known to him to be true.

In the next sections, we will see how P and V can efficiently homomorphically
evaluate C. And this is actually all there is to it (at the 215-feet level).

8 Homomorphisms of VOLEs

Additive homomorphism. The problem: players hold authentication corre-
lations for x0 and x1, that is P holds x0,M0, x1 and M1, and V holds k0,∆, and
k1, such that Mi = ki + xi ·∆. Note that ∆ is the same for all VOLEs in the
proof - otherwise, the homomorphisms wouldn’t work. How can P and V arrive
at an authentication correlation for the sum x2 = x0 + x1? That is, we want P
to obtain M2 and V to obtain a random k2, such that M2 = k2 + x2 ·∆.

3

P sets M2 = M0 +M1. Writing it out, M2 = M0 +M1 = k0 + x0 ·∆+ k1 +
x1 ·∆ = (k0 + k1) + (x0 + x1) ·∆. Evidently, k2 is simply k0 + k1, which V can
compute.

Since the secret x2 is the sum of the secrets x0 and x1, VOLEs are additively
homomorphic. Importantly, this homomorphism is cheap to compute and does
not require any communication.

Adding scalar. Now let’s consider adding a publicly known scalar c to an
authenticated x0, rather than adding two VOLEs. In this case, P holds x0,M0,
and the constant c. V holds k0,∆, and the constant c. The goal is for P and V
to arrive at the authentication correlation of x0 + c, that is to obtain M2 and
k2, such that M2 = k0 + (x0 + c) ·∆.

This is achieved by P setting M2 = M0 and V setting k2 = k0 − c ·∆. It is
easy to see that this results in authenticated x2 = x0 + c. Indeed: k2 + x2 ·∆ =
k2 + (x0 + c) · ∆ = k0 − c · ∆ + (x0 + c) · ∆ = k0 − c · ∆ + x0 · ∆ + c · ∆ =
k0 + x0 ·∆ = M0 = M2.

Multiplication by scalar. The problem: players hold an authentication
correlation for x0. P holds x0 and M0 and V holds k0 and ∆, such that M0 =
k0 + x0 · ∆. Both P and V know the constant c. How can P and V arrive
at the authenticated correlation of c · x0, that is, obtain M2 and k2 such that
M2 = k2 + x2 ·∆ = k2 + c · x0 ·∆?

This can be achieved by P setting M2 = c ·M0. Then, M2 = c ·(k0+x0 ·∆) =
ck0 + cx0 ·∆. Clearly, k2 is just c · k0 and x2 is the desired cx0.

Since the secret x2 is the product of the secret x0 and the constant c, VOLEs
are homomorphic with respect to multiplication by constants.

9 VOLE-based ZK - example

Let’s look at a simple example of a ZK proof that could be easily accomplished
with VOLEs:

• Imagine P is trying to prove that he knows values a, b that satisfy this
equation: a+ 2b = 0. He wants to do this without explicitly revealing his
values for a and b.

• P and V could evaluate arithmetic circuit implementing a function C(a, b) =
a+ 2b using VOLEs to easily accomplish this.

• First, they initialize two VOLEs which encode the secrets a and b (as
described in the earlier protocol). P gets Ma, a,Mb, and b, while V gets
ka, kb, and ∆.

• P and V then multiply the VOLE corresponding to b by 2. P gets a new
secret 2b and its corresponding MAC 2Mb, while V gets the key 2kb. ∆
remains unchanged.

• Finally P and V add the two VOLEs together. P obtains the secret a+2b
with a MAC of Ma + 2Mb. V obtains the key ka + 2kb and still has ∆.

4

Going back to the properties of VOLEs, Ma+2Mb must equal (ka+2kb)+
(a+ 2b) ·∆.

• Recall that, if P has correct values for a and b, a + 2b = 0. Thus, Ma +
2Mb = (ka + 2kb) + (0) ·∆ = ka + 2kb with an honest prover.

• P can send V Ma + 2Mb. If this is equal to V’s value ka + 2kb, V will be
convinced that P indeed knows values of a andb such that a+ 2b = 0.

• The only way P could have come up with the correct value for Ma +2Mb

without knowing the correct secrets a, b would be if he could guess ∆,
which would give him access to all the k-values. However, the probability
of P guessing ∆ is extremely low, especially as the size of the ring R gets
larger.

10 Multiplication of VOLEs

Unfortunately, multiplication does not fit in with VOLEs as neatly as linear
transformations (addition and scalar multiplication). Given two VOLE encryp-
tions of secrets, there is no way to easily (i.e. without communication) generate
a VOLE encryption of the product of those secrets. Therefore, for every multi-
plication gate in the ZK circuit, P and V need to exchange messages to generate
a new VOLE for the output. (This is, of course, possible since P knows both of
the secret inputs and can compute the output secret). P then needs to prove
to V that this VOLE was generated correctly; i.e. the secret it authenticates is
actually the product of the gate’s input secrets. This proof is called a “multipli-
cation check”. There are several state-of-the art ways to do this multiplication
check, each of them quite different. We will discuss a few of them in the following
sections.

Crucially, for efficiency, multiplication checks are usually processed in a batch
(vectorized).

11 Wolverine multiplication check [WYKW21]

Brief overview: Let [xi] and [yi] be the (authenticated) inputs to a multipli-
cation gate i. Let the gate’s output be zi = xi · yi, and [zi] is the corresponding
authentication correlation. P proves, with a high probability, that he calculated
zi correctly, resulting in the correct [zi].

With the Wolverine protocol, P can prove each multiplication gate simul-
taneously, either during or after the entire ZK circuit evaluation. At a high
level, P and V start by generating many random VOLE-authenticated triples
([a], [b], [c]) with the constraint that a · b = c. V then asks P to reveal some of
these triples. If a significant number of the triples are incorrectly constructed,
V has a high chance of opening an incorrect one and thus catching P cheating.
If all triples V checks are constructed correctly, he then goes on to match every
unopened triple with a multiplication gate i (several triples are mapped to each

5

gate). In a procedure described later, he can detect cheating if either the triple
or the actual gate is incorrectly constructed. If both are incorrect, V might
not be able to detect cheating; however it is very unlikely that P will be lucky
enough to not get caught in other stages of the proof with so many incorrect
triples.

Wolverine multiplication check in more detail. Let the verification
circuit C have n multiplication gates. P and V hold their parts of VOLE-
authenticated triples ([xi], [yi], [zi]) for i ∈ n. P wishes to prove that for every
i, xi ·yi = zi. Players set parameters B and f and let ℓ = n ·B+f . Here B is the
“bucket size”, i.e. the number of random triples used to verify each gate. Think
of B = 3 or so. f is the number of opened random triples, and is proportional
to the security parameter. B and f are set to achieve desired proof soundness,
i.e. the probability of catching a cheating P.

For i ∈ ℓ, P and V generate VOLE correlations for random values ai, bi, ri
for i ∈ {1, ..., ℓ} using a VOLE extension protocol. Of course, these are not
multiplication triples, i.e. ai · bi = ri is unlikely to hold.

Thus, P converts them to triples: For each ai, bi, ri generated in the previous
step, P sends V di := ai ·bi−ri. Both parties compute [ci] := [ri]+di. Note that
this authenticated addition is possible for P and V to do without communication,
as discussed in Section 8. Additionally, note that ci is the product ai · bi if the
prover operates honestly. This is because ci = ri + di = ri + ai · bi − ri = ai · bi.

V then chooses a random permutation of the list of triples ([ai], [bi], [ci]),
and sends the permutation to P. The two parties use this permutation to per-
mute {([ai], [bi], [ci])}i∈ℓ. We will see that later this permutation is necessary to
prevent P from cheating.

For each i ∈ n, P and V iterate through j = 1, ..., B and perform the
following:

1. Select the (i− 1)B + jth permuted triple. (Recall, triples were randomly
permuted by V, ensuring that P cannot select which triples are selected
together.) This selection goes sequentially through the list of triples, pick-
ing a new one for every j-value for each i-value. When i is 1 and j is 1,
this expression selects the first triple; when i is n and j is B, this ex-
pression selects the last triple. Let’s call the selected authenticated triple
([a], [b], [c]).

2. P sends δa := xi − a and δb := yi − b to V. P and V then compute
[µ] := [c] − [zi] + δb · [a] + δa · [b] + δa · δb. It is easy to verify that if
xi · yi = zi and a · b = c, then µ = 0 (and conversely, if xi · yi ̸= zi, then µ
is unlikely to be 0, over the random choices of a, b and if a · b = c).

Thus, P and V check that [µ] = [0]. Note that µ, c, zi, a, and b must be
authenticated to allow for this check. Further, all (a, b, c) triples must be
hidden from V to hide the values x, y, z. As discussed in Section 8, once
δa, δb are sent, P and V can compute [µ] using the homomorphism of the
authenticated correlation without communication.

6

3. Then, P and V check that the values [xi]− [a]− [δa] and [yi]− [b]− [δb] both
encode 0’s. It is easy to see that, if δa and δb are constructed correctly,
these expressions evaluate to [0]. The above check is needed to prevent
cheating P from choosing incorrect δa, δb that would result in µ = 0 while
xi · yi ̸= zi.

Crucially, the checks of Items 2 and 3 can be performed simultaneously! This
reduces the number of rounds for the proof from O(n) to constant. This has
huge practical importance: e.g. for proving a 1M multiplication gate circuit on
a fast network with 5ms latency, the 1M rounds alone will take 106 ·5ms, which
is 5000s or 1hr23min!

Another important observation here is that all the [0] checks can be done
simultaneously by P sending a single hash of all the MACs, which V then com-
pares to the hash of all his keys.

Recall that, in the beginning of this protocol, P and V generated ℓ authen-
ticated triples ([a], [b], [c]), where ℓ = n ·B + f . However, while iterating i from
1 to n and iterating j from 1 to B, we only covered n · B triples. P opens the
remaining f triples (selected by V), providing V another way he can catch P
cheating. The two parties compute [d] := [c]− a · b (recall that c = a · b and is
authenticated). P and V then check to ensure that [d] encodes a 0. If it does
not, c ̸= a · b, and P cheated somewhere. V can then abort.

12 Multiplication check using circuit random-
ization

The goal of this check is the same as the goal of the Wolverine check: P has
created [x], [y], [z] and needs to prove that z = x · y. To do so, P and V follow
these steps:

• P and V create a random [a]. P creates [c] where c = a · y.

• V supplies P a random challenge e. P and V both compute [ϵ] = e·[x]−[a].

• P opens [ϵ] by sending ϵ to V. Together, they check that [ϵ]− ϵ = [0] - in
other words, that P sent the correct ϵ to V. Remember that V already has
his share of [ϵ], which he computed individually before.

• P and V check that e · [z] − [c] − ϵ[y] = [0]. Ignoring the authentications
for the sake of checking whether this expression should evaluate to 0, we
get e · z − c − ϵy. We substitute ϵ for e · x − a, and we obtain e · z −
c − e · x · y − ay. Finally, substituting z for x · y and c for a · y, we get
e · x · y − a · y − e · x · y + a · y = 0. Note that the original expression
e · [z]− [c]− ϵ[y] only includes scalar multiplication and addition, so it is
simple to calculate without communication based on the homomorphism
(see Section 8). If P was honest, P and V should obtain [0].

7

• If either [ϵ]− ϵ ̸= [0] or e · [z]− [c]− ϵ[y] ̸= [0], V knows that P has cheated
and can abort.

• Now let’s prove that if P did not choose z correctly, V would catch him with
high probability, even if P opened ϵ correctly. Imagine P set z = x·y+δ for
δ ̸= 0. P can also choose c = a · y+ γ for γ possibly not equal to 0. Given
this, let’s prove by contradiction that V will be able to catch P cheating
by checking that e · [z]− [c]−ϵ[y] = [0]. Let’s imagine that P somehow does
manage to make e · [z] − [c] − ϵ[y] a commitment to 0. That means that
e(x ·y+δ)−a ·y−γ−e ·xy+ay = exy+eδ−ay−γ−exy+ay = eδ−γ = 0.
Thus, eδ = γ, and e = γ

δ . However, P has to choose γ, δ before he knows e.
This means that he would have to guess e correctly before it is given to him
if he wants to to obtain values for γ, δ that correspond to a commitment
of 0. If e is chosen at random, this is very unlikely. Therefore, P will not
be able to create a commitment of 0, leading V to catch him cheating.

Similarly to the Wolverine multiplication checks, these checks can be done
simultaneously for all gates.

References

[BDSW23] Carsten Baum, Samuel Dittmer, Peter Scholl, and Xiao Wang.
SoK: vector ole-based zero-knowledge protocols. Des. Codes Cryp-
togr., 91(11):3527–3561, November 2023.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In 2021 IEEE
Symposium on Security and Privacy, pages 1074–1091. IEEE Com-
puter Society Press, May 2021.

8

