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Abstract

Diffusion models are increasingly deployed in real-world text-to-image services.
These models, however, encode implicit assumptions about the world based on web-
scraped image-caption pairs used during training. Over time, such assumptions
may become outdated, incorrect, or socially biased–leading to failures where the
generated images misalign with users’ expectations or evolving societal norms.
Identifying and fixing such failures is challenging and, thus, a valuable asset for
service providers, as failures often emerge post-deployment and demand specialized
expertise and resources to resolve them. In this work, we introduce SURE, the first
end-to-end framework that SecUrely REpairs failures flagged by users of diffusion-
based services. SURE enables the service provider to securely collaborate with an
external third-party specialized in model repairing (i.e., Model Repair Institute)
without compromising the confidentiality of user feedback, the service provider’s
proprietary model, or the Model Repair Institute’s proprietary repairing knowledge.
To achieve the best possible efficiency, we propose a co-design of a model editing
algorithm with a customized two-party cryptographic protocol. Our experiments
show that SURE is highly practical: SURE securely and effectively repairs all 32
layers of Stable Diffusion v1.4 in under 17 seconds (four orders of magnitude more
efficient than a general baseline). Our results demonstrate that practical, secure
model repair is attainable for large-scale, modern diffusion services.

1 Introduction

A growing number of real-world services [25, 28, 1, 24, 39, 2, 6, 20, 23, 27, 16] are helping millions
of users to create images from textual prompts [44]. These services are typically powered by test-
to-image diffusion models [18, 38], which generate high-quality images [44, 7] when trained on
billion-scale datasets of image-caption pairs scraped from the web. However, diffusion models
implicitly encode the knowledge and assumptions present in their training data [14, 30, 3, 37, 8],
which then appear again during image generation. This can lead to unintentional failures: although
the generated image may be high quality and technically accurate, it can still misalign with users’
values and expectations. For example, diffusion models might retain outdated or incorrect information
(e.g., the identity of a country’s president or a celebrity’s hairstyle). More importantly, diffusion
models may encode harmful stereotypical assumptions about professions into their parameters. For
example, when given the prompt “A photo of a CEO”, the commercial image generation services
predominantly generate images of men—only 4% of outputs depict women [29].

When model failure happens in practice, users typically discover these failures and provide feedback
on the current behavior of models to the service providers [10]. However, it is challenging for
service providers to incorporate feedback and repair their models for several reasons. First, these
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Figure 1: Block diagram of SURE. A service provider S deploys a diffusion model to generate images
(services) in response to textual prompts (user queries) ( 1⃝ & 2⃝). When a user U notices a failure in S’s
services–due to the outdated, incorrect or discriminative assumption– ( 3⃝), U provides feedback to S ( 4⃝). S
then collaborates with a ModelRepair Institute to securely repair the model ( 5⃝) through cryptographic protocols
that preserve the confidentiality of users’ feedback, service provider’s model and institute’s proprietary repairing
knowledge. Finally, the repaired model is returned only to the service provider ( 6⃝).

unintentional failures emerge over time [30] as world knowledge or societal norms evolve. Second,
repairing diffusion models usually requires substantial expertise and resources [9, 4], which service
providers, especially start-ups, lack. One possible solution to address this problem is for the service
provider to share its model and user feedback with an external institution specializing in model repair1

who can repair the failure. However, this approach raises significant concerns for all parties involved.
Sharing the model compromises its confidentiality, undermining the commercial value of service
provider’s image-generation service. Sharing user feedback is also not permissible due to privacy
regulations such as the GDPR [40]. Meanwhile, the repair institution is reluctant to disclose its repair
techniques in order to protect its own intellectual property.

Our Work. We address these challenges by introducing two-party secure repairing based on user
feedback. We propose SURE (Figure 1), a secure framework that enables a service provider and an
external model repair institution to collaboratively repair the service provider’s diffusion model using
users’ feedback and the institution’s repair expertise while remaining mutually blindfolded. To ensure
that the users’ feedback, the provider’s proprietary model, and the expert’s repair recipe all remain
confidential, SURE leverages secure two-party computation (2PC) techniques [45, 15], which allow
two parties to jointly compute any function without revealing anything about their private data beyond
the function output. Directly computing an existing knowledge editing algorithm [29, 3, 14, 44]
in 2PC is theoretically feasible, but becomes completely unrealistic in practice due to the high
computation cost of both 2PC and knowledge editing algorithms. Instead, we take a co-design
approach to jointly optimize both the machine learning and cryptography components. SURE targets
and updates only a tiny fraction of parameters–namely, the keys and values of cross-attention layers–
with a crypto-friendly repair formula. Our design enables each party to shift expensive operations
offline, allowing us to design a lightweight, customized cryptographic protocol on top of it.

Our protocol consists of (1) a small 2PC circuit that privately matches the user feedback to the most
relevant fix and (2) an oblivious-transfer-based protocol [31] that securely delivers the corresponding
fix. Our protocol completely avoids matrix operations inside 2PC, and the cryptographic overhead
remains constant regardless of the number of layers repaired. Our end-to-end secure repair framework
is highly efficient and scalable: our experiments show that a service provider can use SURE to repair
all 32 layers of their Stable Diffusion v1.4 [33] in collaboration with a Model Repair Institute in
under 17 seconds, whereas an optimized baseline protocol needs over 100 hours.

In summary, we propose the first secure repairing framework that enables users to control the
model’s behavior over time and enables service providers to ensure continued alignment with social
expectations post-training without retraining. We highlight the following contributions:
• We initiate the study of an important and emerging problem of model repair while protecting

the security of the model, data, and the repairing knowledge. We formulate the security and
utility requirements needed in real-world applications.

• Although generic cryptographic protocols can be used to support this task, their efficiency is
completely unacceptable for realistic applications. To this end, we co-design a crypto-friendly
editing algorithm and a customized 2PC protocol such that the editing algorithm is as effective
as state-of-the-art model repair approaches while minimizing the protocol cost when executed
using our optimized cryptographic protocol.

1https://humanfeedback.io/
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• We implemented our protocol and a baseline protocol using generic 2PC. We tested their perfor-
mance for repairing Stable Diffusion v1.4. We observed 4 orders of magnitude improvement
in runtime compared to the baseline, bringing secure model repairing from merely a concept to
something that can practically be deployed on modern models.

2 Notations and Preliminaries

Notations. We use lowercase bold letters like c to denote column vectors and uppercase bold letters
like W to denote matrices. We write [n] to denote the set {1, 2, . . . , n}. We use consistent notation
for values in the diffusion model architecture, as defined in the next few paragraphs.

Diffusion Models [18, 38] are a class of generative models that have recently emerged as the SOTA
in image generation. Inspired by non-equilibrium thermodynamics, diffusion models use a fixed
algorithm to incrementally add random noise to images (or other data), and then learn how to
reverse this process. The learned model is then used for image generation. Diffusion models have
not always been the SOTA in image generation; prior to diffusion models, GANs were the most
promising image generation models [11]. However, compared to GANs, diffusion models offer
multiple advantages that lead to better results [12]. Diffusion models use more stable loss metrics
than GANs. Additionally, because diffusion models generate images over a series of timesteps, their
task is easier than that of GANs, which do it in one pass.

In this work, we focus on text-to-image diffusion models [32, 35, 26, 17, 34], where the diffusion
process is guided by a user-provided text prompt that is embedded and injected into the cross-attention
layers of the model. Formally, we consider a diffusion modelM that generates images by denoising a
Gaussian sample xT over T time steps using a neural network Dθ(xt, t, c), where c is a conditioning
signal derived from the text. The text prompt is first tokenized and processed by a text encoder, which
outputs a sequence of token embeddings {ci}ℓi=1 where ci ∈ Rc that represent the semantic content
of the input text. Let C = [c1, . . . , cℓ] ∈ Rc×ℓ denote the resulting matrix of text embeddings. At
every cross-attention layer, these embeddings are linearly projected into K = WKC ∈ Rℓ×k and
V = WV C ∈ Rℓ×v using learned key and value projection matrices WK ∈ Rk×c and WV ∈ Rv×c,
respectively. Next, the key K is multiplied by a query Q ∈ Rn×k that represents the current image’s
visual feature. The cross-attention mechanism computes an attention map and a weighted value
output: M = softmax

(
QK⊤
√
m

)
and O = MV. The output O guides the visual features based on

the semantic content of the text prompt.

Diffusion Model Editing aims to remove various biases from diffusion models and has become
increasingly important as these models gain widespread adoption. One way it is done is by adjusting
various aspects of the training process to limit bias; this can include altering the loss function [36] or
debiasing the training dataset [22]. Fine-tuning existing diffusion models is perhaps a more realistic
approach, as biases can become apparent after training. To do this, a small fraction of the weights
in the diffusion model are updated to fix a specific problem. This can be done by editing the text
encoder [43], or by directly editing the diffusion model [13, 29]. We focus on fine-tuning after
training in this paper, as this ensures models can be updated as needed and do not need to be retrained.

Oblivious Transfer (OT) is a fundamental cryptographic primitive essential for secure computation
protocols [31]. In a 1-out-of-n OT, a sender possesses n messages (m1, . . . ,mn), and a receiver
selects an index i ∈ [n] to retrieve mi without revealing i to the sender. Simultaneously, the receiver
gains no information about the other messages mj for j ̸= i. This ensures that the sender remains
oblivious to the receiver’s choice, and the receiver learns only the selected message.

Secure Two-Party Computation (2PC) [45, 15] enables two mutually distrustful parties, each
holding private inputs, to jointly compute a public function without revealing any information beyond
the output. We consider 2PC in the presence of static semi-honest adversaries, where parties follow
the protocol but may attempt to learn additional information from the protocol execution transcript.
The ideal functionalities of 1-out-of-n OT and 2PC are presented in Appendix B.

3 Problem Description

Parties and Trust Assumptions. We consider a setting including three parties as illustrated in
Figure 1: a service provider S that offers diffusion-based image generation services, users U
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who query the service and provides feedback when observing service failures, and a model repair
institute I, which specializes in repairing model failure and collaborates with S to repair its model.

In this setting, we make the following trust assumptions in our threat model:

• Users U query the image generation service with their textual prompt and receive images. U
discovers failures as they useM-based services of S. U’s flagged failures are because of the fact
thatM acquires knowledge within their training data [29] which become outdated, incorrect and
harmful over time. For instance, for the prompt “A photo of a CEO”, only 4% of generated images
(with random seeds) contain female figures [29]. This feedback should only be visible to S.

• A Service Provider S trains the text-to-image diffusion modelM on huge amounts of web-scraped
image-caption pairs, and provides image generation services usingM. S wants to protect (i) the
proprietary weights ofM and (ii) user-submitted feedback, which may contain sensitive user
data and is subject to privacy regulations. We additionally require S must not reveal which failure
it is fixing when interacting with I, as it might inadvertently leak user data.

• A Model Repair Institute I specialized in repairing text-to-image diffusion models. I wants to keep
both its repairing algorithm and fix database secret, as they are its core intellectual property.

Goal and Technical Challenges. The above-mentioned failures make the world knowledge ofM in
deployments unaligned with users’ values and expectations [14, 30, 3, 37, 8]. Our goal is to repair
M failures identified by U . Although users are essential for flagging failures, they do not directly
participate in the repair process. Once the feedback is submitted, it becomes the responsibility of S
to repair their model. As service providers usually lack expertise and resources for repairing failures
(they mostly focus on enhancing image qualities), S needs to contact an external Model Repair
Institute I to perform such fixes. This is challenging for several reasons. First, service providers
are not allowed to share user’s data2 with third-parties due to privacy regulations. Second, service
providers are not willing to hand over their models to third parties due to IP concerns. Third, Model
Repair Institutes are not willing to disclose their fixes to service providers to protect their business
model. Therefore, we model the protocol as a two-party computation between S and I, with the
feedback treated as private input held by S . We adopt the standard semi-honest security model, where
both parties follow the repair protocol correctly but may try to infer additional information from
the interaction: both S and I are institutions with legal and reputational reasons to behave correctly
during model repairing, though they may have incentives to recover more information.

Our Solution. Given the trust assumptions above, our goal is to build a provably secure protocol that
protects the private inputs of both parties: the model weights and user feedback held by S, and the
proprietary repair logic and database held by I . To achieve this, we rely on cryptographic techniques.
We design a crypto-friendly knowledge editing algorithm by adapting an efficient editing method
that avoids retraining from scratch. Based on this, we construct a lightweight, customized two-party
computation protocol, which we detail in the next section.

4 SURE: SecUre model REpairing

We propose SURE, a protocol for effective, efficient, and secure repair of text-to-image diffusion
models based on user feedback and collaboration between a service provider S and a model repair
institute I. SURE combines a crypto-friendly model repair algorithm with a customized two-party
computation (2PC) protocol. Our approach builds on recent knowledge editing techniques [29] that
enable model updates without full retraining. However, applying these techniques out-of-the-box is
unsuitable for efficient 2PC due to the large number of layers in diffusion models and the high cost of
interactive operations such as high-dimensional matrix multiplications and inverses. Our key insight
is that most of this cost can be avoided by carefully modifying the editing algorithm.

We design a crypto-friendly repair algorithm (Section 4.1) tailored to the 2PC setting, without
compromising the effectiveness of the original editing method. Our redesigned algorithm shifts
almost all heavy computation offline, allowing each party to process its data locally and independently.
Specifically: (1) I constructs the repair database offline (Algorithm 1); and (2) S applies the fix
to its model parameters locally (Algorithm 2). In the online phase, we further develop a custom
2PC protocol (Section 4.2) that enables the service provider to securely locate and receive the fix

2Note that we do not consider protection of confidentiality or privacy of users’ request to S as it is only a
failure identification and their institution knows their data, but we want to protect it against other institutions.
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Algorithm 1: Repair database creation
Input: A Model Repair Institute I, A public text encoder (TextEncoder), A collection of Failures
Output: Repair Database

1: Repair Database = {}
2: for all failure ∈ Failures do
3: Repair data pair = {source prompt:x, destination prompt:x′} ▷ Creating a repairing data
4: {C ∈ Rc×l,C′ ∈ Rc×l′} = TextEncoder({x,x′}) ▷ Tokenizing and computing embeddings
5: C∗ ∈ Rc×l = RemoveAdditionalTokens(C′) ▷ Creating an embedding that corresponds to

the same source token by discarding the embedding of additional tokens in the
destination prompt

6: Wfix =
(
λfailureI+C∗C⊤) (λfailureI+CC⊤)−1

▷ Creating Repair Knowledge
7: Repair Database.append({failure : Wfix})
8: Output Repair Database

Algorithm 2: Repair diffusion model parameters
Input: Service Provider S, A text-to-image diffusion modelM, Received repair knowledge Wfix

Output: Updated parameters of the repaired text-to-image diffusion modelM
1: CrossAttentionLayers← CrossAttentionAccess(M) ▷ Extract cross-attention layers that

map textual data into visual data
2: for all i ∈ Size(CrossAttentionLayers) do
3: W′i

V ←Wi
V Wfix ▷ Update value projection matrix

4: W′i
K ←Wi

KWfix ▷ Update key projection matrix
5: Updated diffusion model returned to only the service provider

corresponding to their failures from the institute’s repair database through a secure fuzzy matching
procedure and a lightweight Oblivious Transfer (OT) protocol. We prove (Section 4.3) that our
protocol keeps users’ feedback, service provider’s model parameters, and the institute’s proprietary
editing algorithm confidential while ensuring that the model is faithfully repaired.

4.1 Crypto-Friendly Model Repair Algorithm

We instantiate SURE based on the Text-to-Image Model Editing (TIME) procedure introduced by
Orgad et al. [29]. We briefly review their core editing algorithm before presenting our modifications.

The editing algorithm in TIME takes as input two prompts:
• A source prompt, e.g., “a photo of CEO” that under-specifies certain visual attributes. It allows the

model to fill in missing details using its implicit assumptions, which could reflect bias.
• A more specific destination prompt, e.g., “a photo of female CEO” where an explicit attribute is

added to correct the failure in the original source prompt.
The editing goal is to repair failures in the model’s original output by shifting the image generation
from reflecting the source prompt to better align with the intended visual attributes of the destination
prompt. This enables targeted correction of outdated, incorrect, or socially biased associations
embedded in the model. The key insight from Orgad et al. is that it suffices to update only the
key and value projection matrices WK and WV (see Section 2 for detailed definitions) within
the model’s cross-attention layers. These matrices are responsible for mapping textual tokens into
attention-compatible visual representations, and patching them effectively alters the generated output.

Let {ci}ℓi=1 ⊂ Rc and {c′j}ℓ
′

j=1 ⊂ Rc be the token embeddings of the source and destination prompt.
For every source token, TIME locates the corresponding destination token that contains the same
word and denotes its embedding by c∗i . This gives the aligned set {c∗i }ℓi=1 for tokens appear in both
prompts. Let C = [c1, . . . , cℓ] and C∗ = [c∗1, . . . , c

∗
ℓ ], for every layer i, the closed-form update

formula (Equation 5 in [29]) is given by

W′i
K =

(
λWi

K +K∗C⊤)(λ Id +CC⊤)−1
&W′i

V =
(
λWi

V +V∗C⊤)(λ Id +CC⊤)−1
, (1)

where λ ∈ R+ is a hyperparameter, and K∗ = WKC∗ and V∗ = WV C
∗.

Efficiency and Privacy Challenges. The most direct way to securely evaluate the above update
formula is to encode it as a circuit and run a generic 2PC: the provider S supplies the private weights
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Functionality FRepair

This functionality is parameterized by a similarity metric d(·, ·) and a database size n.
Input:
• S inputs a query key kqry ∈ Rk and model matrices {Wi

V ∈ Rv×c,Wi
K ∈ Rk×c}i∈[m].

• I inputs the database {ki,Ci,C
∗
i , λi }i∈[n] where Ci,C

∗
i ∈ Rc×l, λi ∈ R+, and ki ∈ Rk.

Model Repair:
1. Compute p = argmini∈[n] d(kqry,ki), breaking ties by choosing the smallest i.
2. For each model layer i ∈ [m], compute and send the following updated matrices and index p to S:

W′ i
⋆ ←

(
λpW

i
⋆ +Wi

⋆C
∗
pC

⊤
p

)(
λpIc +CpC

⊤
p

)−1

⋆ ∈ {V,K}.

Figure 2: Ideal functionality of model repair between S and I.

Wi
⋆, the institute I supplies C,C∗, λ, and the circuit outputs the updated weights W′i

⋆ to S . Despite
significant advances in modern 2PC protocols [42, 19], applying them directly to this task remains
inefficient. To illustrate the limitations of this generic approach, we implemented a baseline that
computes the editing algorithm in a generic 2PC protocol, and it requires over 100 hours to perform
a single repair (see Section 5). More importantly, because generic 2PC assumes the circuit is public,
service provider will always learn the institute’s proprietary repair algorithm.

Our Crypto-Friendly Editing Formula. The bottleneck above mainly comes from forcing heavy
matrix operations into the secure computation. Our key observation is that we can refactor the editing
formula in a way that completely eliminates any matrix operations inside 2PC. The matrix update
formula in Equation 1 can be refactored as follow:

W′i
V =

(
λWi

V +V∗C⊤
)(

λ Id +CC⊤
)−1

=
(
λWi

V +Wi
V C

∗C⊤
)(

λ I+CC⊤
)−1

= Wi
V︸︷︷︸

known to S

(
λ I+C∗C⊤)(λ I+CC⊤)−1︸ ︷︷ ︸

Wfix, known to I

. (2)

Here, the service provider S holds WV , and the institute I holds C, C∗, and the hyperparameter λ.
Thus, I can compute

Wfix ←
(
λ I+C∗C⊤

)(
λ I+CC⊤

)−1

, (3)

and S can update the matrix by computing W′i
V ←Wi

V Wfix. The above refactored equation applies
identically to WK and holds for all layers in the model. The fix matrix Wfix now encapsulates the
semantics of the update and fully decouples model-specific parameters from repairs. Our refactored
formula yields three immediate advantages for our purposes:

• One fix fits all. The same Wfix matrix can be reused across every cross-attention layer i, and
applies uniformly to both Wi

K and Wi
V . This significantly simplifies the repair process and

reduces communication.
• Matrix algebra disappears from 2PC. All matrix operations to compute Wfix are handled entirely

by I offline. Then, S can use lighter cryptographic primitives like OT to acquire the Wfix from I.
• Algorithm privacy is preserved. Because the fix is provided as a single matrix and applied

independently by S , there is no need to reveal the full structure of the editing algorithm or encode
it into a shared circuit. Therefore, I’s proprietary repair method remains hidden from S.

We adopt this new editing formula in our protocol SURE. As we show in Section 5, this seemingly
simple refactor achieve four orders of magnitude speed up over the baseline.

4.2 Efficient Two-Party Model Repair Protocol

We now provide a detailed description of the secure two-party model repair protocol in SURE. The
ideal functionality and our two-party model repair protocol are presented in Figure 2 and Figure 3.

We first briefly recall our setting. The protocol SURE involves two parties: a service provider S and a
model repair institute I. S wish to repair its deployed modelM and derives from aggregated user
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Protocol ΠRepair

Input:
• The service provider S and institute I agree on a similarity metric d(·, ·) and the database size n.
• S inputs fix query vector kqry ∈ Rk and model matrices {Wi

V ∈ Rv×c,Wi
K ∈ Rk×c}i∈[m], where m

is the total number of model layers.
• I inputs {kj ,Cj ,C

∗
j , λj }j∈[n], where Cj ,C

∗
j ∈ Rc×l, λj ∈ R+, kj ∈ Rk, and n is the size of repair

database.
Database Initialization: I computes the repair database {ki : Wfix,j}j∈[n], where

Wfix,j ←
(
λjIc +C∗

jC
⊤
j

)(
λjIc +CjC

⊤
j

)−1

.

Matching: Let Cd,n be the circuit that outputs(p,⊥), where p = argminj∈[n] d(kqry,kj), breaking ties
by choosing the smallest j. S and I send (Cd,n,kqry) and (Cd,n, (k1, . . . ,kn)) to F2PC. S receives the fix
matrix index p.
Model Repair:
1. S and I send (recv, n, p) and (send, n, {Wfix,j}j∈[n]) to FOT. S obtains the fix matrix Wfix,p.
2. For each model layer i ∈ [m] and ⋆ ∈ {K,V }, S locally updates each layer of its model using the

same fix matrix: W′ i
⋆ ←Wi

⋆Wfix,p.

Figure 3: Our secure model repair protocol in the (FOT,F2PC)-hybrid model.

feedback a query key kqry ∈ Rk that captures the failure domain to be fixed. I maintains a private
key–value repair database {kj : Wfix,j}j∈[n] of size n, where each key ki ∈ Rk semantically labels a
failure and each Wfix,j is the repair matrix for this failure. The protocol consists of three stages:
1. Database Initialization. Before interacting with S, the institute I locally computes Wfix,j from

the embedding matrices Cj ,C
∗
j and edit hyperparameter λj , and tag the fix with a key kj that

semantically describe the failure.
2. Matching. S and I run a small circuit inside 2PC to locate the database entry whose key kp

minimizes a public similarity metric d(kqry,kj). After this stage, only S learns the index p; I
learns nothing about kqry beyond the fact that a comparison occurred. When an exact match is
sufficient—e.g., d is the discrete metric or the database indexes are public, I can determine p
outright, so this stage can be skipped and the parties proceed directly to the next step.

3. Oblivious Model Repair. After acquiring the index p, I runs an OT protocol to retrieve the single
matrix Wfix,p without revealing p and without accessing any other entry. It then updates every
cross-attention layer locally by right-multiplying both value and key projections with Wfix,p to
complete the repair.

Security Guarantees. Our protocol ensures that (i) the institute I learns nothing about the modelM
or the query key kqry; (ii) the service provider S learns only the single fix matrix matching its query
and gains no information about any other entry in I’s database; and (iii) the editing algorithm itself
remains private, because I builds the database offline, the editing algorithm chosen by I remains
entirely hidden from S. In the next section, we formalize and prove these guarantees.

4.3 Security Proof

In this section, we establish the security of our protocol ΠRepair (Figure 3) and show how it can be
generalized to any editing mechanism while hiding the editing algorithm being employed by the
institute. All of our proofs are based on the standard composition paradigm [5]. We now state the
following main security theorem of our protocol.

Theorem 1 (Protocol Security). Protocol ΠRepair (Figure 3) securely realizes FRepair (Figure 2) in
the (FOT,F2PC)-hybrid model against semi-honest adversaries.

Proof. For clarity, we denote the service provider by P1 and the repair institute by P2 for the
remainder of the proof.

Correctness. Note that all matrix products in both the protocol and the functionality are well-defined.
Additionally, for all j ∈ [n], the regularization parameter λj > 0, hence the matrix (λjIc+CjC

⊤
j ) ≻

0 and is therefore invertible.
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To prove privacy, we separately consider the case of a corrupted institute and a corrupted service
provider.

Corrupted Institute P̂2. It is straightforward to prove security against P̂2, as it receives no output
from either FOT and F2PC. Therefore, a simulator S2 that simply forwards P̂2’s message to FRepair

can perfectly simulate its view.

Corrupted Service Provider P̂1. We construct a simulator S1 that calls P̂1 as a subroutine and
interacts with FRepair to simulate its view. S1 proceeds as follows:

1. S1 obtains the message (Cd,n,kqry) from P̂1 and record kqry.
2. S1 sends (kqry, {Ic, Ic}) to FRepair and receives index p and {Ŵ′ i

V ,Ŵ′ i
K}i∈[m].

3. S1 acts as F2PC and send p to P̂1; upon obtaining (recv, n, p) from P̂1, send Ŵ′ 1
V to P̂1.

We show that P̂1’s view is perfectly simulated. To see this, notice that the ideal world, because S1
sends identity matrices to FRepair, for every layer

Ŵ′ i
V = (λpIc + IcC

∗
pC

⊤
p )(λpIc +CpC

⊤
p )

−1 = Wfix,p.

As a result, the matrix P̂1 received in the ideal execution is exactly the same from FOT in the real
execution. Therefore, its view is perfectly simulated. As an honest P2 receives no output in both
worlds, the joint output distributions are also identical in both worlds. This concludes the proof.

Algorithm Privacy. For concreteness, we instantiate our protocol based on the editing algorithm
of [29]. However, our cryptographic construction readily accommodates any repair mechanism: any
repair procedure that modifies model weights while leaving the network architecture unchanged can
be dropped in without altering the protocol. Moreover, the protocol keeps the institute’s choice of
editing algorithm confidential. To see this, notice that S only sees the resulting fix matrix Wfix while
the algorithm itself remains hidden. To formalize this property, we first define the notion of editing
algorithms and prove a theorem stating the algorithm-hiding property of our protocol.

Definition 1 (Editing Algorithms). A model repair editing algorithm is an efficient mapping

f : (C,C∗, aux)→Wfix,

where C,C∗ are the source and target prompt embedding matrices, aux is institute-held auxiliary
input, and Wfix is the fix matrix of proper dimensions that is right-multiplied to every model layer.

Theorem 2 (Algorithm Privacy). Let Uf = {f1, . . . , fZ} be any finite family of editing algorithms.
Let Π′

Repair be the extension of ΠRepair in which I chooses an index z ∈ [Z], and builds its database
using fi. Let F ′

Repair be the corresponding ideal functionality that receives the description of fz from
I, evaluates fz internally to obtain the fix matrices, and sends those matrices to S. Then, for every
PPT adversary AS corrupting the service provider S, there exists a PPT simulator S ′1 such that
viewReal

AS

(
Π′

Repair

)
≡ viewIdeal

S′
1

(
F ′

Repair

)
.

Proof. The proof follows from the security proof of Theorem 1 in a straightforward manner. We
define a modified simulator S ′1 that behaves the same as S1 in the security proof, except it forward
S’s message to F ′

Repair instead of FRepair. It then follows from the security proof that Π′
Repair securely

realizes F ′
Repair in the (FOT,F2PC)-hybrid model and S′

1 perfectly simulates AS ’s view.

Theorem 2 implies that the service provider S learns no information about the institute’s chosen
editing algorithm fi beyond what is already implied by the fix matrix Wfix,p. Consequently, our
protocol enables the institute to swap in or fine-tune its proprietary repair procedures without touching
the underlying cryptographic protocol. This design not only supports fast iteration but also hides the
institute’s editing knowledge from the service provider.

By contrast, generic secure 2PC protocols would require compiling the entire editing algorithm into a
single Boolean or arithmetic circuit that is known to both parties—a standard assumption in secure
computation constructions [45, 15]. In such settings, the circuit’s structure (and hence the algorithm
it encodes) is public, even if the inputs remain hidden.
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Figure 4: Runtime and communication cost for SURE to repair Stable Diffusion v1.4 with varying repair
database sizes. Reported times are averages over 10 runs. Each database entry consists of a [768,768] fix matrix
and a [100,1] key, where all numbers are single-precision floating-point. Communication reported is the larger
of the two parties’ data sent. Costs are decomposed into two stages: (1) Matching – finding the closest key in
the database to the failure query using the Euclidean distance as the similarity metric and (2) Model Repair –
returning the fix via the oblivious transfer protocol to S.
Table 1: Runtime and communication costs of SURE vs. the baseline approach to perform one repair of
Stable Diffusion v1.4 with varying database sizes. SURE is orders of magnitude faster than the baseline, as
our protocol completely avoids matrix operations in secure computation.

Database Size
Baseline Ours

Running Time Comm. Running Time Comm. Running Time
(hours) (TB) (seconds) (GB) Improvement

500 167.36 76.42 2.81 2.94 2.14×105

1000 171.84 82.30 5.58 5.65 1.11×105

1500 176.02 88.19 8.62 8.61 7.35×104

2000 180.48 94.08 11.10 11.41 5.85×104

2500 184.96 99.97 15.21 14.32 4.38×104

3000 189.44 105.86 16.77 17.09 4.07×104

5 Experimental Evaluation

We implement and evaluate the efficiency of SURE in repairing Stable Diffusion v1.4 [33] with 32
layers, and compare it with a baseline model repair protocol that runs entirely within a generic 2PC
framework for comparison. Our code is provided in the supplementary materials. Details about our
implementations are in Appendix C.

Efficiency. Figure 4 shows the end-to-end runtime and communication cost of SURE when perform-
ing a full Stable Diffusion v1.4 repair across varying repair database sizes. SURE completes the
repair in under 17 seconds, even with a repair database of 3,000 entries, with communication capped
at 17.1 GB. Therefore, SURE is highly efficient.

Benchmarking. We further break down the total cost into two main stages–key matching and model
repair–as described in our protocol in Figure 3. Most of the runtime is spent in the matching stage,
which uses a lightweight 2PC protocol to identify the nearest key. In contrast, the OT-based model
repair phase is highly efficient and remains nearly constant regardless of database sizes.

Scalability. Our protocol scales well with both the repair database and model size: since only a
single fix matrix is retrieved and applied across all layers, the online runtime is independent of the
number of model layers. Moreover, SURE’s modular design allows for further optimization: the
matching step can be replaced with more efficient cryptographic primitives such as private information
retrieval or fuzzy private set intersection. In cases where the database key is public3, the matching
phase can be skipped entirely to further reduce overhead.

Comparison. Table 1 compares our protocol against the baseline. Our protocol achieves up to a
2× 105 speedup. This dramatic improvement stems from avoiding expensive matrix operations and
linear scans within 2PC. In the baseline, most of the cost arises from executing the entire editing

3For example, [29] considers a database of gender bias in different professions, where the database key is
simply the profession name (e.g., “nurse”), which is made public. Because the index of the desired fix is known
in advance, matching is unnecessary.
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formula securely and retrieving the correct fix matrix through a full scan of the database, both of
which scale poorly with the database size. In contrast, our customized design isolates the secure
computation to a small matching task and a lightweight OT-based retrieval protocol, while offloading
all matrix operations to local (offline) computation, resulting in far superior performance.
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Functionality FOT

Upon receiving (send, n, {mi}i∈[n]) from P1 and (recv, n, b) from the P2 where b ∈ [n], send mb to P2.

Figure 5: Ideal functionality of 1-out-of-n oblivious transfer.

Functionality F2PC

For i ∈ {1, 2}, upon receiving (C, xi) from Pi, compute y1, y2 ← C(x1, x2) and send yi to Pi.

Figure 6: Ideal functionality of secure two-party computation.

Technical Appendices

A Limitations

SURE is the first secure framework for model editing and demonstrates high efficiency even on
commercial-scale text-to-image diffusion models. However, it is currently limited to this domain.
Extending to other models, such as LLMs, may require new editing algorithms and cryptographic
techniques. Also, our efficient protocol only supports linear editing of the model weight; if editing
techniques involve architectural changes or non-linear weight updates, further optimizations might
need to be made to maintain its efficiency. While SURE can handle multiple repairs, no optimization,
batching, or amortization is implemented. We comment that the matching phase can be further
optimized for multiple repair settings using techniques like fuzzy private set intersection or private
information retrieval.

B Ideal Functionalities

The ideal functionality of 1-out-of-n OT is depicted in Figure 5. This can be efficiently realized using
log n 1-out-of-2 OT, which can in turn be efficiently computed using existing cryptographic protocols.
The ideal functionality of 2PC is presented in Figure 6.

C Implementations Details

Experiment Setup. We implement our end-to-end protocol SURE and compare it with a baseline
protocol that executes all editing operations within a generic 2PC framework. The baseline is
implemented based on the semi protocol variant from the MP-SPDZ framework (BSD3 License) [21],
a popular framework for benchmarking generic secure computation protocols. However, MP-SPDZ
does not provide a low-level OT interface suitable for our customized protocol in SURE. For ease of
integration, we instead implemented SURE using the EMP-OT library from the EMP-toolkit (MIT
License) [41], which provides efficient implementations of various OT primitives and a flexible
low-level API.

To evaluate both SURE and the baseline, we perform a single model repair on Stable Diffusion
v1.4 [33]. In this model, the source and target prompt embeddings C,C∗ are matrices of shape
[768, 77]. The repair algorithm modifies 32 cross-attention layers in total, where each layer contains
key and value projection matrices of shape [320, 768]. As a result, each fix matrix Wfix has dimension
[768, 768]. We set the query and database keys kqry, {ki}i∈[n] to 100-dimensional vectors. We
represent all values using single-precision floating-point numbers and use Euclidean distance as the
similarity metric for key matching. All experiments are run with a single thread on two Amazon
EC-2 c7i.2xlarge instances, each with 16 GB of RAM.

Baseline. To highlight the efficiency of our lightweight protocol SURE, we implement a baseline
model repair protocol that runs entirely within a generic 2PC framework for comparison. To ensure
a fair comparison, we apply several optimizations to avoid penalizing the baseline unnecessarily.
First, we represent editing computation as an arithmetic circuit, which is more efficient than Boolean
circuits for linear algebra. Additionally, we use 32-bit fixed-point representation to avoid the high cost
of floating-point arithmetic in 2PC. To reduce overhead further, we allow the model repair institute

I to pre-compute the inverse matrices Wp
inv =

(
λpIc +CpC

⊤
p

)−1

outside the 2PC to avoid costly
secure matrix inversion.
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The baseline protocol proceeds as follows:

1. S inputs the query key kqry and all projection matrices {Wi
K ,Wi

V }i∈[m] in all m layers; I inputs
the repair database {ki, λi,Ci,C

∗
i ,W

i
inv}i∈[n].

2. The circuit matches the closest index p = argmini∈[n] d(kqry,ki) and breaks ties by choosing
the smallest i. Then, for each layer i ∈ [m], it computes the fix for all matrices:

W′ i
⋆ ←

(
λpW

i
⋆ +Wi

⋆C
∗
pC

⊤
p

)
Wp

inv ⋆ ∈ {K,V }.

3. The updated matrices {W′i
K ,W′i

V }i∈[m] are then revealed to S.

Despite these optimizations, the baseline remains orders of magnitude slower than our protocol SURE,
as we show in Section 5.
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