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Introduction 

Artificial intelligence (AI) is used to perform increasing numbers of everyday tasks, 

including voice-to-text recognition, facial recognition, and more. One particularly convenient use 

case to me is my Kindle’s handwriting recognition software, which transcribes my handwritten 

notes to text. As a coder, I was curious to understand how computers, which are only able to 

process a handful of very simple instructions, manage to accomplish such involved tasks. I 

researched this topic further and discovered the vast topic of neural networks and the math 

behind them. 

In this paper I aim to describe the calculus behind neural networks and my process in 

creating my own digit transcription neural network in a formal yet accessible manner. 

1.1 Neural Networks 

Neural networks are machine learning models that mimic the processes of human brains 

in order to classify an input. For the sake of simplicity, let’s focus on a classic example of a 

neural network problem - the transcription of handwritten digits. In a process called training, a 

neural network is given thousands of pieces of data and learns to distinguish between them. In 

our example, the neural network would be given a labeled dataset of images of handwritten 

digits, such as the MNIST digit dataset, and it would learn to classify the images as 0, 1, 2, …, or 

9. 

Neural networks are complex structures. They consist of nodes arranged in layers. Each 

node is connected to every node in its adjacent layers. A common way to visualize these 

networks is shown below 一 note the three key sections of a neural network: the input layer, the 

hidden layers, and the output layer. 

https://www.tensorflow.org/datasets/catalog/mnist
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Figure 1 

If the input data are images, as in our example, the images are separated into input nodes 

each containing one (numerical) pixel value based on the pixel’s shade. For instance, if the input 

image has size 10 pixels x 10 pixels, the input layer of the neural network would consist of 100 

nodes, each containing one pixel value. Each of these values are then used as inputs to the 

following layers of the neural network, as can be seen in the image above. The following layers, 

or the hidden layers, can be thought to represent specific distinguishing features of the images in 

the dataset. A neural network classifying handwritten digits could contain hidden layers that 
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identify the rounded parts of the digit. This would help it tell the difference between straight 

digits such as 1 and rounded digits such as 2. 

An important thing to note here is that the neural network is not given these features to 

look for in the data. Rather, during training, the computer attempts to classify all data in the 

dataset. It keeps track of which inputs it misclassifies (for example, classifying an image of a 2 

as a 1). Then, using calculus, the computer adjusts the features it's looking for, trying to 

minimize the errors it makes during classification (3Blue1Brown, 2017b). 

1.2 The Math in Neural Networks 

Prior to this section, I gave a very high-level description of how neural networks work. In 

this section I will discuss what exactly computers are doing when creating and running a neural 

network. 

 Computers are only able to process numbers and operations on those numbers, and 

neural networks are no exception. Each layer performs mathematical operations (what I 

previously called “finding features”) on values of the previous layer to obtain the activations 

(real numbers from 0-1) of nodes in that layer. Activations can be thought of as “outputs” of 

nodes which are fed into nodes in subsequent layers. The activations of nodes in the penultimate 

layer then directly influence the final classification. 

Let’s step away from abstract concepts and look into what operations are being 

performed on nodes in the neural network. To better illustrate this, let’s consider a simple 

example.  

Imagine we have a neural network pre-trained to evaluate the XOR function (a boolean 

function defined in the image below) on two inputs. The neural network could look as follows: 
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Figure 2 

The main parameters that determine what a neural network does are weights, biases, and 

activation functions. Weights and biases are assigned by the network during training, while 

activation functions are assigned by the coder prior to training. Weights are given to all 

connecting edges of the neural network, highlighted in blue in the image above. These weights 

signify the importance of their corresponding edges. Biases, highlighted in red in the image, are 

given to all nodes in the network, excluding the nodes in the input layer. These biases offset the 

activations of each node. The neural network also has an activation function, such as the one 

shown above, which determines the final activation of each node. 
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The activation of each (non-input) node is given by the equation 

, where the following is defined: 𝑎
𝑙
𝑛 = σ(

𝑖=0

𝑘

∑ (𝑎
𝑙−1
𝑖 × 𝑤

𝑛
𝑙

𝑖
𝑙−1) + 𝑏

𝑙
𝑛)

1)​  is the activation of node number  in layer number . 𝑎
𝑙
𝑛 𝑛 𝑙

2)​  is the activation function of layer . σ 𝑙

3)​  is the number of nodes in layer . 𝑘 𝑙 − 1

4)​  is the weight of the edge connecting  and .  𝑤
𝑛
𝑙

𝑖
𝑙−1 𝑛

𝑙
𝑖
𝑙−1

​ Let’s go through an example to better illustrate this. Consider the XOR neural network 

from above. Plugging in 1 and 0 as the input values, we get the correct output: 1. 
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Figure 3 

On the other hand, plugging in 1 and 1 as the input values gives us the desired output of 

0. 

 

Figure 4 

2.1 Introduction to Backpropagation 

In this section I discuss how neural networks “learn”, a process I previously mentioned 

very briefly.  

Before a neural network begins learning, it assigns random weights and biases to edges 

and nodes. During learning, the neural network iterates through every element of the given 
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dataset. (This dataset is labeled, meaning that humans have created labels for each image by 

hand. For example, an image of a 2 would be labeled ‘2’.) It calculates the classification for each 

element (possibly incorrectly), and then finds the accuracy of its prediction through a loss 

function. This function, which is set by the coder, outputs a value that is higher when accuracy is 

low and lower when accuracy is high by comparing the expected and actual values for each 

classification (often done using the least-squares method). The neural network adjusts its weights 

and biases to decrease loss (improve accuracy) using an algorithm called backpropagation. It 

then repeats this process until the accuracy is high. 

Let’s take a look at how backpropagation works. Backpropagation is a recursive 

algorithm that finds a gradient of the loss function with respect to the weights and biases in the 

neural network. Using the negative of this gradient, we can adjust the weights and biases to 

minimize error in the neural network (3Blue1Brown, 2017a).  

2.2 Backpropagation Calculus (Simplified) 

Consider a simplified neural network with only one node in each layer (3Blue1Brown, 

2017b). The steps of the backpropagation algorithm for this neural network are as follows: 

1)​ Begin at the last layer of the neural network, . 𝐿

2)​ Consider every element  of the training dataset. 𝑖

3)​ Calculate the partial derivative of the loss function of element , , with respect to the 𝑖 𝐶
𝑖

weight connected to the node in , .  is the activation of the node in layer  and  is 𝐿 𝑤𝐿 𝑎𝐿 𝐿 𝑏𝐿

the bias of the node in layer . 𝐿



 

10 

a)​ Let’s define . Then , the activation of the node in , is 𝑧𝐿 = 𝑤𝐿 × 𝑎(𝐿−1) + 𝑏𝐿 𝑎𝐿 𝐿

, where  is the activation function. Let’s also define our loss function to be σ(𝑧𝐿) σ

, where  (a constant) is the desired activation. (𝑎𝐿 − 𝑦)2 𝑦

b)​ The partial derivative, , can be broken up into  using the 
∆𝐶

𝑖

∆𝑤𝐿
∆𝑧𝐿

∆𝑤𝐿 × ∆𝑎𝐿

∆𝑧𝐿
×

∆𝐶
𝑖

∆𝑎𝐿

chain rule. 

c)​ Taking these new partial derivatives, we get , , and ∆𝑧𝐿

∆𝑤𝐿 = 𝑎𝐿−1 ∆𝑎𝐿

∆𝑧𝐿
= σ'(𝑧𝐿)

. Thus, . 
∆𝐶

𝑖

∆𝑎𝐿
= 2(𝑎𝐿 − 𝑦)

∆𝐶
𝑖

∆𝑤𝐿 = 𝑎𝐿−1 × σ'(𝑧𝐿) × 2(𝑎𝐿 − 𝑦)

4)​ Take the average of all  to get the partial derivative of the loss function over all 
∆𝐶

𝑖

∆𝑤𝐿

training examples with respect to : . 𝑤𝐿 ∆𝐶

∆𝑤𝐿 = 1
𝑛
𝑘=0

𝑛−1

∑
∆𝐶

𝑘

∆𝑤𝐿

5)​ Calculate the partial derivative of the loss function with respect to , the bias of layer , 𝑏𝐿 𝐿

in a similar manner. , where . ∆𝐶

∆𝑏𝐿
= 1

𝑛
𝑘=0

𝑛−1

∑
∆𝐶

𝑘

∆𝑏𝐿
∆𝐶

𝑘

∆𝑏𝐿
= 1 × σ'(𝑧𝐿) × 2(𝑎𝐿 − 𝑦)

6)​ Calculate the partial derivative of the loss function with respect to , the activation of 𝑎𝐿−1

the node in the previous layer. 

a)​ .  Then   
∆𝐶

𝑖

∆𝑎𝐿−1
= ∆𝑧𝐿

∆𝑎𝐿−1
× ∆𝑎𝐿

∆𝑧𝐿
×

∆𝐶
𝑖

∆𝑎𝐿
∆𝐶

∆𝑎𝐿−1
= 1

𝑛
𝑘=0

𝑛−1

∑
∆𝐶

𝑘

∆𝑎𝐿−1

7)​ Step back a layer and calculate steps 3-6, substituting  for , and updating all 
∆𝐶

𝑖

∆𝑎𝐿−1
∆𝐶

𝑖

∆𝑎𝐿

other values to correspond to the new layer, .  and 𝐿 − 1
∆𝐶

𝑖

∆𝑤𝐿−1 = ∆𝑧𝐿−1

∆𝑤𝐿−1 × ∆𝑎𝐿−1

∆𝑧𝐿−1
×

∆𝐶
𝑖

∆𝑎𝐿−1
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. Repeat this process, going back more layers (hence the 
∆𝐶

𝑖

∆𝑏𝐿−1
= ∆𝑧𝐿−1

∆𝑏𝐿−1
× ∆𝑎𝐿−1

∆𝑧𝐿−1
×

∆𝐶
𝑖

∆𝑎𝐿−1

name backpropagation) until the input layer is reached. 

8)​ Store all the partial derivatives of , the loss function, with respect to each weight and 𝐶

bias to get the desired gradient. 

We then adjust the weights and biases of the neural network using this gradient. The loss 

function is recalculated and this process is repeated until the accuracy sufficiently improves. For 

a relatively simple neural network, such as the digit recognition network from earlier, this 

backpropagation and adjustment process is repeated about 10 times (Manmayi, 2020). 

Note that the above process is meant only for networks with one node per layer. 

However, this process extends naturally to cover more complex networks. 

2.3 Optimization 

In the backpropagation algorithm discussed in 2.2, we calculate the gradient of the loss 

function by iterating over each piece of training data. This is very computationally expensive, so 

one common optimization is to iterate over mini-batches of the training data instead. These 

mini-batches are randomly-chosen small subsets of the total training data. In every iteration of 

the backpropagation/adjustment process, a new mini-batch is chosen to create the new gradient. 

These mini-batch gradients are less accurate, but are much faster to compute. 

Another common optimization is neural network pruning. This involves removing edges 

from the neural network which correspond to weights close to zero. In other words, we are 

simplifying the neural network structure by removing connections that do not have a significant 

impact on the output. 
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3.1 Coding a Neural Network 

To apply my new knowledge in neural networks, I coded my own digit recognition 

algorithm, as discussed earlier in this paper (base code from Harvard's CS50 AI). This kind of 

neural network is very useful in everyday life 一 for example, as mentioned before, for the 

transcription of notes. My network does not transcribe letters yet, but that could be an 

improvement for the future. 

My neural network is designed to classify a handwritten digit as one of 10 options: either 

0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. Therefore, my neural network was required to have 10 nodes in its 

output layer. Other than that, however, all choices about activation functions and numbers of 

nodes/layers were left to me to decide. I will discuss some decisions I made and their 

implications on the accuracy of my neural network. 

3.2 Adjusting Parameters 

Normally, in the coding of neural networks, an activation function is chosen for each 

layer of the network, rather than for each node. Usually, all hidden layers have the same 

activation function, while the output layer might have a different one. For this neural network, I 

decided to use the ReLU activation function for hidden layers and the softmax function for the 

output layer, a common decision in neural network programming (Saxena, 2021). These two 

functions are pictured below. 

https://cs50.harvard.edu/ai/2024/
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Figure 5 - ReLU​ ​ ​ ​ Figure 6 - Softmax 

​ The ReLU function is often used as an activation function for hidden layers because of 

how quickly it can be computed 一 this speeds up training time considerably. Additionally, the 

ReLU function allows for less variation in the activation of nodes, since many nodes are given 

“0” activation. This prevents overfitting, which refers to the over-training of neural networks so 

that they classify training data accurately, but not real-life data.  

I chose to use the softmax function as the activation function of the last layer because of 

its natural translation to probability, as it ensures that the sum of all output activations equals 

one. Hence, the activations of each output node can be interpreted as the probability that the 

specific node is the actual classification.  

For layers and nodes, I found that having two layers with 64 nodes each was a good 

match for this problem. With too many nodes and layers, overfitting becomes likely. However, 

with too few, the neural network isn’t able to accomplish complex tasks accurately. I 

experimented with different combinations of nodes and layers until I reached a good accuracy of 

99%. 

After deciding on these parameters, I ran my code to train my neural network using the 

backpropagation algorithm discussed earlier. 
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3.3 Neural Network Results 

I trained my model on a random sample of half of the entire training database. Then I 

used the other half of the training database to test my model on previously-unseen data. I found 

that, using the parameters specified in Section 3.2, my model had a very high accuracy of 

98.61%. 

I used existing software to demonstrate the capabilities of my model, as shown in the 

images below. 

 

Figure 7   

To make a more accurate model, I could have used more training data. However, this was 

not easily accessible 一 the MNIST dataset I used is the most thorough one freely available. 
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Additionally, I could have used larger mini-batches when training my network, which would 

have made the gradients found in the backpropagation algorithm more accurate. 

However, neural networks aren’t meant to magically interpret all kinds of data. There are 

some images of digits that are inherently unclear, and which neither humans nor my neural 

network can easily transcribe. These kinds of images contribute to the imperfect accuracy of my 

neural network. 

Conclusion 

Neural networks are extremely powerful tools which assist us in all aspects of daily life. 

This exploration into how they work under the hood and their limitations (some of which I 

discuss above in Section 3.3) helped me understand them much better. My new in-depth 

understanding will be crucial as I continue to study AI and implement and apply AI algorithms. 
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